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Abstract

Neural machine translation (NMT) models learn some syntactic information about

sequential source and target language text without explicit instruction. This knowledge

is incomplete, meaning NMT systems poorly model complex syntactic phenomena in-

cluding agreement and attachment ambiguities. This study’s central thesis is that incor-

porating target-side syntax in training Transformer-based NMT models improves trans-

lation quality. I propose a novel method to directly model target language syntax in

Transformer-based NMT models, by training the model to predict an attention distribu-

tion over lexical syntactic tags prior to predicting output words, with a composite, de-

caying loss function. I employ Combinatory Categorial Grammar (CCG) supertags to

represent syntactic constraints on a lexical level. I evaluate the method against a base-

line NMT model, finding small, consistent improvements of 0.4-0.7 BLEU on WMT17

data from Turkish to English. Improvements are independent of adding source syn-

tax and monolingual data, and complementary to the latter; and ablation experiments

show improvements stem specifically from the utility of CCG supertags and the pro-

posed tag attention method. The improved Turkish→English translation quality results

in part from better agreement and word order handling for complex constructions.

Keywords — Neural machine translation, Syntax, Combinatory Categorial Grammar
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Chapter 1

Introduction

1.1 Problem Statement

State-of-the-art neural machine translation (NMT) models implicitly learn to model

syntactic phenomena such as agreement dependencies (Linzen et al., 2016; Raganato

and Tiedemann, 2018). While NMT systems’ modelling of syntax improves on phrase-

based statistical machine translation models (Bentivogli et al., 2016), it is not perfect.

Past work has attempted to incorporate syntactic information directly into LSTM-based

and Transformer-based sequence-to-sequence NMT models, on both source and target

sides.

In this work, I explore the consequences of incorporating explicit target-side syn-

tactic information in a Transformer NMT model. The method trains the model to

predict attention over lexical syntactic labels, requiring non-trivial syntactic resources

for annotating target language data. I perform experiments in a low-resource setting

from Turkish→English, exploiting the substantial target-side resources. I use a sta-

tistical parser to annotate English data with Combinatory Categorial Grammar (CCG)

supertags (Lewis and Steedman, 2014) which indicate words’ categories and syntactic

dependencies (detailed fully in Section 2.2.1). For example, a transitive verb supertag,

(S[dcl]\NP)/NP, indicates a noun phrase NP is required to the right and left, which

gives a declarative sentence, S[dcl]. Figure 1.1 introduces a Turkish-English example;

the proposed method’s intuition is to translate from the Turkish source sentence, via

prediction of CCG supertags, into the English target sentence.

This subject wh-question example demonstrates the divergent word orders of Turk-

ish and English, posing a challenge for NMT. CCG supertags can help by efficiently

representing syntactic information about distant elements within the sentence. Figure

1



Chapter 1. Introduction 2

Source Kim onun bunu kazanmasını ister ?

Src-Gloss who him it win-INF want-PRES ?

Target Who wants him to win it ?

Trg-CCG S[wq]/(S[dcl]\NP) ((S[dcl]\NP)/(S[to]\NP))/NP NP (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP NP .

Figure 1.1: A Turkish→English example translation with source gloss and target CCG

supertags.

1.1 will form a running example throughout this work.

The proposed method predicts an attention distribution over the CCG supertag vo-

cabulary before predicting each word, with a composite word-tag loss function. I test

the method against models with different target-side tags, a multi-task learning model,

a model interleaving tags and words, plus models incorporating monolingual data and

source syntax. The proposed method improves translation quality over a baseline sys-

tem on WMT data by approximately 0.4-0.7 BLEU, with improvements independent of

and largely complementary to the above model variations.

1.2 Motivation and Applications

NMT is a widely used technology in both research and commercial settings, ultimately

aiming to produce human-level translations. This is increasingly achievable for short

sentences, but longer or syntactically complex sentences are more difficult. The hope

is that this method of making syntactic predictions over CCG supertags before output

word prediction can improve the general handling of word order and agreement for

more complex syntactic constructions such as coordination.

In low-resource settings as I experiment in here, target-side syntax can be es-

pecially advantageous since source-side syntactic resources are not always available

(Nădejde et al., 2017). Over 94% of languages are poorly resourced (Joshi et al., 2020),

lacking corpora (especially with gold standard labels) or linguistic expertise (Besacier

et al., 2014) as well as competent translation systems, providing strong motivation for

the current focus on target-side syntax. Further, I experiment with source-side syn-

tax using Dependency Grammar supertags, and additional monolingual data, to test

whether target-side syntax is complementary to other approaches used to improve low-

resource NMT, where we want to use all available resources. Finally, the empirical gap

of work incorporating unbracketed linearised target-side syntax in Transformer-based

NMT provides further motivation.
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The central thesis proposed here is that incorporation of target-side syntax in Trans-

former NMT models improves translation quality. This forms the principal research

question, which I test in Chapter 5. Secondarily, I hypothesise that effects from target-

side syntax are complementary to and independent of adding monolingual training data

and source-side syntax; and third, that improvements are attributable to the method and

CCG supertags rather than e.g. decoder depth. I also hope this practical application of

syntactic formalisms including CCG will encourage closer collaboration of NLP and

theoretical linguistics researchers on common problems.

1.3 Contributions

The primary contributions of this work are as follows:

• A novel approach to incorporating target-side syntax in the decoder at word-

level by predicting an attention distribution over CCG supertags prior to word

prediction, plus a decaying supertag loss.

• A first attempt at incorporating unbracketed, approximately linearised target-side

syntax into Transformer-based NMT.

• An empirical evaluation of the proposed method in Turkish→English translation,

finding consistent improvements over the syntax-unaware baseline in this low-

resource setting.

• Ablation experiments attributing improvements to the proposed architecture and

the informativeness of CCG supertags, and showing improvements are comple-

mentary to monolingual data.

• An error analysis illustrating considerable adequacy and fluency improvements

for syntactic constructions including questions and coordination.

1.4 Structure

The structure of this thesis is as follows: Chapter 2 introduces NMT and syntactic

representations including CCG, and reviews previous work in target-side syntax-aware

NMT. Chapter 3 formalises the proposed method of target syntax incorporation, along-

side other baselines. Chapter 4 describes the experimental setup and implementation of
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the proposed models, and Chapter 5 presents the evaluation of experiments with target-

side syntax, plus an error analysis and discussion of performance on various syntactic

constructions. Chapter 6 summarises the findings and contributions, and concludes by

offering possible future research directions.



Chapter 2

Background and Related Work

In this chapter I review neural machine translation, formal syntactic representations,

and previous attempts to incorporate syntax into NMT.

2.1 Neural Machine Translation

Machine translation systems automatically translate sentences from a source language

to a target language. Earlier statistical phrase-based methods (Zens et al., 2002; Koehn,

2009) have been usurped by neural network-based systems which learn complex rela-

tionships from large text databases.

The first neural MT models invoked a novel sequence-to-sequence (S2S) architec-

ture, with separate encoder and decoder recurrent neural networks (RNNs), typically

LSTMs (Cho et al., 2014; Sutskever et al., 2014; Jean et al., 2015). The encoder RNN

learns a hidden representation of the input which initiates the decoder RNN; this then

predicts the output. S2S models learn to predict the probability of the target condi-

tioned on the source in an end-to-end fashion without explicit linguistic instruction.

Learning involves updating parameters via mini-batched gradient descent to minimise

the negative log-likelihood of the training corpus.

LSTM-based S2S models’ performance diminished with increased sentence length

due to the encoder’s fixed-size hidden state. Bahdanau et al. (2015) solved this with an

attention mechanism which calculates a score between the current decoder state and

the encoder states, used in a weighted sum of encoder states to produce a context vector

which is input into prediction layers. Attention scores are typically calculated using a

multi-layer perceptron (Bahdanau et al., 2015) or dot products (Luong et al., 2015).

LSTM-based NMT’s restriction to training set vocabularies causes poor handling

5
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of rare and unseen words. Additionally, low-resource settings may not have sufficient

data to learn good representations of even common words. To address this Sennrich

et al. (2016b) propose training on a sub-word level using byte-pair encoding (BPE)

which involves successively merging the most frequently co-occurring characters/sub-

words up to the desired vocabulary size. BPE over joint source and target data allows

tied embeddings and more consistent segmentation (Sennrich et al., 2016b). Figure

2.1 shows BPE applied to a modified Example 1.1 with shared sub-words, with ‘–’

indicating sub-word splits. I note Turkish’s agglutinative morphology (van Schaaik,

2020) means more morphemes per word and more BPE sub-words.

Source Kim program– c– ının bunu kazan– masını ister ?

Target Who wants the program– mer to win it ?

Figure 2.1: A Turkish→English source-target pair with BPE applied.

The general S2S architecture is versatile. RNNs were initially popular; more re-

cently, Gehring et al. (2017) use convolutional neural networks, and Vaswani et al.’s

(2017) non-recurrent Transformer networks now reliably achieve state-of-the-art re-

sults (Lakew et al., 2018; Bojar et al., 2018; Barrault et al., 2019). Transformers em-

ploy highly parallelised, stacked layers of self-attention, encoder-decoder attention,

and feed-forward neural networks, learning enhanced source and target representa-

tions. I formalise the baseline Transformer in full in Section 3.1.

NMT systems achieve high translation quality on several metrics and language

pairs (Barrault et al., 2020), and learn linguistic information without overt supervi-

sion (Conneau et al., 2018; Mareček and Rosa, 2019). However, issues in modelling

syntax remain: RNN NMT systems produce less fluent and adequate translations for

sentences with coordination, (Shi et al., 2016), PP attachment ambiguity (Bentivogli

et al., 2016), relative clauses (Linzen et al., 2016), and negation (Sennrich, 2017). Ra-

ganato and Tiedemann (2018) show Transformers struggle to produce grammatically

adequate translations in low-resource settings, and Mareček et al.’s (2020) analysis

suggests grammatical structure may have little influence on Transformers’ language

understanding. Modelling word alignment and sentence structure therefore remains a

central challenge for NMT (Koehn and Knowles, 2017).

This work attempts to directly incorporate target-side syntax to address some of

these syntactic shortcomings. I first explain how syntax may be represented before

reviewing attempts to incorporate it into NMT.
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2.2 Syntactic Representation

Syntax is often incorporated in NMT at the lexical level. I now introduce two for-

malisms which are conducive to incorporation in NMT systems: Combinatory Cate-

gorial Grammar and Dependency Grammar.

2.2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a lexicalised syntactic formalism consist-

ing of a lexicon of words and their possible lexical categories, and combinatory rules

defining how categories combine (Steedman, 1996, 2012). Primitive categories include

S (sentence), NP (noun phrase), N (noun), and PP (prepositional phrase); features on

S specify sentence types e.g. S[dcl], S[b] and S[to] indicate declarative, bare-infinitival

and to-infinitival sentences respectively. Complex categories, e.g. S[wq]/(S[dcl]\NP),

are functors describing required argument types, accepting directions, and the resulting

type; they can also be arbitrarily nested. Combinatory rules combine categories in the

derivation, resulting in a grammatically complete sentence as in Figure 2.2.

Who wants him to win it ?

S[wq]/(S[dcl]\NP) ((S[dcl]\NP)/(S[to]\NP))/NP NP (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP NP .
> >

(S[dcl]\NP)/(S[to]\NP) S[b]\NP
>

S[to]\NP
>

S[dcl]\NP
>

S[wq]

Figure 2.2: CCG derivation for Example 1.1, showing how CCG categories (supertags),

combine into complete sentences.

CCG supertags are the terminal categories in the derivation, representing a word’s

syntactic type, including the presence and order of constraints and dependencies. For

example, the supertag for win, (S[b]\NP)/NP requires an object NP to the right and

a subject NP to the left, resulting in a bare-infinitival clause S[b]. In Figure 2.2, cat-

egories combine via forward application (—>); backward application, coordination

and type-raising rules also exist. I note CCG’s explicit handling of coordination is

an advantage over other formalisms including Minimalist Grammar (Chomsky, 1995,

2000).

CCG supertags signal context-sensitive information about local and distant el-
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ements in the sentence. Consider Figure 2.2: the tag for declarative verb wants,

((S[dcl]\NP)/(S[to]\NP))/NP, signals that the rest of the sentence forms a declarative

sentence S[dcl]; it shows an NP argument (him) is required immediately rightwards;

and it indicates the requirement for a to-infinitival clause S[to]\NP, which itself is de-

pendent on the leftwards wh-NP. This illustrates how incremental local supertag pre-

diction facilitates both word prediction (since supertags narrow down possible words)

and, crucially, prediction of future arguments and dependencies in the right order.

CCG supertags are so informative that the search problem in supertagging a sen-

tence can be reduced to an exhaustive, deterministic search for the most probable cat-

egory sequence supporting a CCG derivation, with a simple model then ranking the

relatively few possible analyses (Lewis and Steedman, 2014). This is in contrast to

part-of-speech tags which, being relatively uninformative, require probabilistic tag-

ging models. The resulting supertags can be easily incorporated into NMT systems

either as a full sequence in the encoder or incrementally in the decoder. The compact

supertag vocabulary (507) helps NMT models generalise better over supertags than

words. In sum, the major advantage of CCG supertags is their high syntactic informa-

tion density in an efficient lexical representation, without explicit bracketing. Conse-

quently, supertagging is often labelled almost-parsing (Bangalore and Joshi, 1999). In

this study, I incorporate predictions over CCG supertags in the NMT decoder prior to

word prediction.

2.2.2 Dependency Grammar

Dependency Grammar (DG) (Tesnière, 1959; Mel’čuk, 1988; Nivre, 2005) is a syn-

tactic formalism representing sentence structure as a labelled graph of binary depen-

dency relations between words. The Universal Dependencies (UD) project (de Marn-

effe et al., 2014) defines 37 universal head-dependent syntactic relations; Figure 2.3

shows Example 1.1 parsed with dependency relations. Each word has one incoming

arc, and the set of arcs and edges implicitly forms a dependency tree. UD delineates

three structural types: nominals, clauses, and modifiers. For example, nsubj is a nomi-

nal subject dependent, xcomp is a subordinate clausal complement, mark modifies the

clausal predicate to indicate the clause type (here, to-infinitival), and root indicates the

verbal sentence head.

DG has seen wide usage in NLP (de Marneffe and Nivre, 2019), and it is possible

to obtain DG parses for many languages, including otherwise low-resource languages.
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Who wants him to win it ?

objnsubj

xcomp

punct

mark obj

root

Figure 2.3: Dependency parse of the target-side English sentence from Example 1.1.

I therefore use DG relations in my experiments from the pre-trained statistical Stanza

parser (Qi et al., 2020). Unlike CCG supertagging, DG arcs are uninformative thus

DG parsing is probabilistic. I use DG parses to construct DG supertags following

Ouchi et al. (2014) for comparison with CCG supertags. Their proposed DG supertags

include the linear direction of the head and any dependents; I also propose a simple

supertag combining the incoming relation and the parent’s incoming relation. Table 2.1

summarises the two DG supertag templates; my template DG-A is more fine-grained

while Ouchi et al.’s template DG-B has more parallels with CCG supertags.

Version Tag form Example Vocabulary size

DG-A label|parent label xcomp|root TR: 825 EN: 1632

DG-B label|head direction|dep. direction(s) xcomp|L|L+R TR: 176 EN : 362

Table 2.1: Dependency supertag templates DG-A (proposed here) and DG-B (Ouchi

et al., 2014), with examples for win from Figure 2.3, and Turkish and English supertag

vocabulary sizes.

While CCG supertags are motivated by their derivational role, DG supertags cannot

be used to determine grammaticality and have limited look-ahead capabilities. In Ex-

ample 1.1, while the CCG supertag for who, S[wq]/(S[dcl]/NP), indicates the sentence

is a wh-question with a subsequent declarative clause dependency, the equivalent DG

supertags, nsubj|root and nsubj|R, only indicate who is the subject of the rightwards

root verb, with minimal look-ahead information. I test DG supertags on the target side

against CCG supertags, and on the source side in combination with target-side CCG

supertags, in Chapter 5.
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2.3 Syntax-aware Neural Machine Translation

NMT’s imperfect modelling of syntax motivates approaches to incorporating target-

side syntactic information, which I review now. In phrase-based statistical MT, im-

provements were observed by predicting target-side CCG supertags (Hassan et al.,

2007; Birch et al., 2007). Syntax-unaware end-to-end NMT systems soon outper-

formed these phrase-based models in both fluency and adequacy (Toral and Sánchez-

Cartagena, 2017), without any independence assumptions. However, the success of

syntax incorporation motivated syntax-aware NMT approaches.

Incremental decoding poses a challenge for target-side syntax incorporation. Ide-

ally we would incorporate a target-side incremental syntactic parser (a syntactic lan-

guage model), building full syntax trees. We have accurate incremental parsers for

constituency grammars (Dyer et al., 2016) and CCG (Stanojević and Steedman, 2020)

but incorporation into NMT models is too slow because tree-structures are difficult to

mini-batch in GPUs. Akoury et al.’s (2019) Transformer model avoids incremental de-

coding by predicting a full parse tree then predicting the translation in one-shot condi-

tioned on the tree, speeding up translation. However, all these approaches scale poorly

with increased data, motivating alternative target-side syntax approaches, falling into

two categories: linearised syntax, either with or without explicit bracketing; and im-

plicit syntax incorporation, which requires architectural modifications for training but

uses streamlined models at inference.

Linearisation approaches approximate full syntax incorporation with sequential

syntactic information. Previous approaches with explicit bracketing trained recurrent

models to translate into linearised constituency parses (Aharoni and Goldberg, 2017)

and dependency trees (Le et al., 2017), requiring no decoder modifications and improv-

ing over baselines via increased reordering. In Transformer-based NMT, Saunders

et al. (2018) observe improvements by ensembling various target-side linearisation

strategies, but this requires more complex decoding.

Others incorporate linearised syntax without explicit bracketing, using lexicalised

sequential information that tightly couples words and syntax. Nădejde et al. (2017)

train a GRU-based S2S model to predict interleaved CCG supertags and words without

decoder modifications, observing improvements for different syntactic constructions

and outperforming baseline and multi-tasking models. However, Kondratyuk et al.’s

(2019) results using interleaved random tags suggest most of this improvement arises

from the regularising effects of predicting supertags, plus a deeper decoder, rather than
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from useful syntactic generalisation. To my knowledge, no previous work has incorpo-

rated unbracketed linearised target-side syntax in Transformer-based NMT. The novel

work here with CCG supertags intends to fill this empirical gap, reporting full exper-

iments, including with random tag and interleaved CCG supertag models, in Chapter

5. This method of incorporation lets models freely discern the important syntactic in-

formation without rigid constraints, which hurt statistical MT systems (Chiang, 2010)

and we expect this to hold for NMT systems.

Finally, implicit target-side syntax incorporation injects a syntactic inductive bias

during training. Some propose multi-tasking RNN decoders learning dependency

parsing (Kiperwasser and Ballesteros, 2018) or part-of-speech tagging (Niehues and

Cho, 2017) alongside translation, both improving on syntax-unaware baselines. The

proposed method is somewhat implicit since it does not output linearised parses but

implicitly predicts and incorporates a CCG supertag distribution before word predic-

tion. I also experiment with a multi-task learning model to test whether the proposed

method outperforms fully implicit methods. Kuncoro et al.’s (2019) implicit approach

improves over baselines using knowledge distillation to transfer syntactic knowledge

from a syntactic language model (Dyer et al., 2016) to a larger LSTM language model;

this addresses syntactic language models’ scaling issues, and is potentially applicable

to syntax-aware NMT decoders.

Source-side syntax incorporation approaches are similarly varied: some encode

full source-side dependency trees using multi-tasking NMT-RNNG systems (Eriguchi

et al., 2017) or Graph Convolutional Networks (Bastings et al., 2017); others incor-

porate linearised syntax with multi-tasking systems learning to encode (Currey and

Heafield, 2018) or predict (Luong et al., 2016) source-side linearised parses; and fi-

nally, some incorporate source-side syntactic features as embeddings (Sennrich, 2017;

Duan et al., 2019), or by interleaving CCG supertags and semantic supersense labels

(Vanmassenhove and Way, 2018). I test my method’s compatibility with source syntax

using interleaved source-side Dependency Grammar supertags.

In addition to incorporating syntax, using backtranslated monolingual data (Sen-

nrich et al., 2016a) can improve NMT, especially in low-resource settings (Bojar et al.,

2017). Similarly, Currey et al. (2017) use copied monolingual data, i.e. appending

English-English data to Turkish-English parallel data, and observe considerable im-

provements in translation quality for high and low-resource pairs. I experiment with

copied monolingual data in Chapter 5.
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Finally, although improvements for incorporating syntax have been observed in

RNN-based NMT, tests in Transformer-based NMT are motivated by the different ex-

pressive power of Transformer and LSTM S2S models on an empirical (Bhattamishra

et al., 2020) and theoretical level (Hahn, 2020).

2.4 Summary

In sum, the method proposed here provides a first attempt at incorporating unbrack-

eted, approximately linearised target-side syntax in Transformer-based NMT with an

informed architectural design. The principal research question follows naturally from

this review, due to the empirical gap. The secondary avenues are also highly motivated,

testing several methods, data modifications and syntactic formalisms discussed here.



Chapter 3

Target-side Syntax in

Transformer-based NMT

This study’s central thesis is that incorporating target-side syntax into Transformer-

based NMT improves translation quality. I now propose a novel method to integrate

target-side CCG supertags into the Transformer decoder. Figure 3.1 summarises the

proposed architectural modifications, discussed in detail in Section 3.2.1.

3.1 Baseline model

I first formalise the baseline S2S Transformer model (Vaswani et al., 2017). The

Transformer is trained on parallel i.e. human translated source-target data, learning

to translate from source sentence x to target sentence y of length I by computing the

conditional probability p(y|x) as below, where y<i = y1...yi−1, and θ is the set of model

parameters:

p(y|x;θ) =
I

∏
i=1

p(yi|y<i,x;θ) (3.1)

The encoder contains 6 stacked layers, with multi-headed self-attention and fully

connected feed-forward neural network (FFNN) sub-layers, each with residual con-

nections and layer-normalisation. These layers output a hidden state encoding of the

source sentence, Hout
enc . Self-attention is position-invariant so input embeddings are aug-

mented with sinusoidal positional encodings, giving embedding matrix X ∈RI×dmodel ,

scaled by
√

dmodel . Self-attention is computed for k heads, where Qk
enc, Kk

enc, and V k
enc

are parametrised linear transformations of X for head k. Heads are concatenated, nor-

malised and passed through the FFNN.

13
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Hk
enc = softmax(Qk

encKk>
enc)V

k
enc (3.2)

Henc = [H1
enc; ...;Hk

enc] (3.3)

H ′enc = norm(Henc +X) (3.4)

Hout
enc = norm(FFNN(H ′enc)+H ′enc) (3.5)

The decoder structure is identical except: it operates incrementally at test time; dur-

ing training, a mask is applied to multi-head attention to avoid attending to future target

embeddings, allowing parallel computation; and a source-target attention sub-layer Z

lies between the self-attention and FFNN sub-layers (with transformation parameter

matrices A, B & C):

Zdec = norm([softmax(H ′decAHout>
enc B>)Hout

encC][1:k]+Hdec) (3.6)

A linear transformation of the decoder hidden state Hout
dec gives a vocabulary proba-

bility distribution ywordi for the ith word.

ywordi = softmax(Hout
decW

out) (3.7)

The training objective is to minimise the negative log likelihood (i.e. cross-entropy

loss) of the generated target sentence y given the source x, where (x,y) ∈ G, the group

of source-target translations, and yi is the ith word of y:

Lword =−
I

∑
i=1

log p(yi|y<i,x;θ) (3.8)

LG
word =

G

∑
g=1
L

g
word (3.9)

At inference, output words are predicted using auto-regressive beam search decod-

ing, where y′ represents a candidate output.

ŷ = argmax
y′

p(y′|x;θ) (3.10)

This Transformer model forms the baseline against which the proposed method is

tested in Chapter 5.



Chapter 3. Target-side Syntax in Transformer-based NMT 15

FFNN
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Self-attention
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+
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Softmax
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DecoderEncoder

S[wq]/(S[dcl]\NP)

Kim onun bunu kazanmasını ister ? <s> …
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=
c
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Figure 3.1: Schematic of model integrating target syntax in Transformer decoder; terms

are defined in Eq.s 3.11 to 3.17, and Example 1.1 provides the input & output. Adapted

from Vaswani et al. (2017). Decoder self-attention is only masked during training.

3.2 Implementation

Syntax can be incorporated into Transformer-based NMT in various ways. Here I

propose a novel method predicting attention over CCG supertags in the Transformer

decoder as a way to tightly and somewhat implicitly incorporate syntax, summarised

in Figure 3.1. I also detail a multi-task learning model predicting CCG supertags

and translations, and Nădejde et al.’s interleaved tag-word model, both of which form

baselines for the proposed method.

3.2.1 Target-side Tag Attention

The Tag Attention model requires a small modification to the Transformer decoder.

After the 6 stacked layers, the final hidden state representation of the target sentence

Hout
dec is used to predict target words. The key intuition of this method is to use Hout

dec to

predict target-side syntax, by using it to predict an attention distribution over a CCG

supertag embedding matrix, then computing a supertag-context vector which is com-

bined with Hout
dec for word prediction.
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First, I transform the decoder hidden state into the tag embedding dimension (512

to 128-dimensions), where W1 ∈ Rdmodel×dtag . Attention scores αtag are computed be-

tween h1 ∈ R1×dtag and tag embedding matrix T ∈ Rvtag×dtag using dot product atten-

tion (with vtag the supertag vocabulary size), followed by a softmax to give atten-

tion weights atag ∈ Rvtag×1. These weights scale each embedding vector in a second

learnable tag embedding matrix S ∈Rvtag×dtag . The resulting weighted embeddings are

summed element-wise along the embedding dimension, producing a supertag-context

vector c ∈ R1×dtag , capturing information about relevant CCG supertags:

h1 =W1Hout
dec (3.11)

αtag = h1 ·T> (3.12)

atag = softmax(αtag) (3.13)

c = ∑atag�S (3.14)

The supertag-context vector is then transformed by W2 ∈ Rdtag×dmodel back to di-

mension dmodel and summed to the original Hout
dec hidden state for word prediction:

htag =W2c (3.15)

Hout ′
dec = Hout

dec +htag (3.16)

ywordi = softmax(Hout ′
dec W out) (3.17)

Crucially, this model has a composite loss function; in addition to word loss, the

model minimises the loss of the predicted attention weights (i.e. output probabilities)

over the tag vocabulary. In essence, the transformation and dot product in Eq.s 3.11 and

3.12 predict a distribution over tags atag for the current word (used as an attention score

to create a supertag-context vector), with loss backpropagated through both matrices

T and W1. The loss for a sequence of tags t is calculated as in Eq. 3.18 for (x,y, t) ∈G,

the set of source, target and tag sequences:

Ltag =−
I

∑
i=1

log p(ti|t<i,y<i,x;θ) (3.18)

LG
tag =

G

∑
g=1
L

g
tag (3.19)

LG = LG
word +L

G
tag (3.20)

Consider Example 1.1 and Figure 3.1. First, the 6 encoder layers take the com-

plete Turkish source sentence as input, returning Hout
enc ; then the start-of-sentence token
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(<s>) embedding is passed into the 6 decoder layers, which also attend to Hout
enc . The

decoder output hidden state Hout
dec is used to predict a distribution for the first tag, sum-

marised as htag and summed to Hout ′
dec , which is then used to predict a distribution for

the first English word. Correctly predicting the tag S[wq]/(S[dcl]\NP) will help to pre-

dict both the wh-word who and the following declarative verb wants. Loss for the

first step is the sum of the predicted negative log probabilities of the first reference

tag S[wq]/(S[dcl]\NP) and word who. In training, this process occurs in parallel, while

at test time it repeats incrementally until the model predicts an end-of-sentence token

(</s>) or reaches its maximum output length.

While training initial models, I observed that tag attention initially improves vali-

dation scores but becomes less advantageous and even inhibitory towards convergence.

I therefore adapted the original loss function to include a weighted, decaying tag loss.

The decay factor D was determined empirically for the specific models built (i.e. by

validation BLEU scores), and is defined as:

DE = 0.65E−1 (3.21)

D =DE if DE > 0.1, else D = 0 (3.22)

where E is the training epoch number such that at epoch 1, the decay factor is 0.650 =

1, at epoch 2, D = 0.651, and so on. When the decay factor drops below 0.1 at epoch

8, it is set to 0, meaning tag loss is no longer used in parameter optimisation. The total

training corpus loss LG is then defined as:

LG = LG
word +DL

G
tag (3.23)

This method is tag agnostic; I test this method in Chapter 5 with CCG supertags,

plus DG supertags and randomly generated target-side tags, against a baseline Trans-

former, to investigate this work’s hypotheses.

3.2.1.1 Design Choices

The proposed method’s design is motivated by three advantages over Nădejde et al.’s

method:

• Soft supertag decisions: While Nădejde et al. choose 1 supertag, predicting

an attention distribution permits incorporating information about any number

of likely supertags in the context vector, without imposing rigid syntactic con-

straints.
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• Decaying loss: This novel modification decreases the importance of tag loss over

time, shifting focus to the harder word prediction task after initially injecting an

inductive bias.

• Search: In principle, soft decisions mean there is no competition during beam

search between different derivations, a potential issue of the interleaving ap-

proach.

3.2.2 Multi-task model

I implement a multi-task learning (MTL) architecture, to test whether fully implicit su-

pertag incorporation is as effective for translation as direct incorporation into word pre-

diction. This architecture draws inspiration from Nădejde et al.’s (2017) MTL model,

except it replaces the GRU with a Transformer, and is more parameter efficient be-

cause the decoder layers are shared, using the final hidden state for both tag and word

prediction concurrently.

The MTL model uses a simple FFNN to predict CCG supertags from Hout
dec:

hm = tanh(W1Hout
dec +b1) (3.24)

ytagi = softmax(W2hm) (3.25)

where W1 ∈ Rdmodel×dhm (dhm = 256, dmodel = 512), and W2 ∈ Rdhm×vtag . The FFNN

projects the decoder output to a hidden layer, applies a non-linearity, then transforms

it into a probability distribution over the tag vocabulary, with which loss is computed.

The loss for one sentence, with tag loss decay, is calculated as:

Lword =−
I

∑
i=1

log p(yi|y<i, t<i,x;θ) (3.26)

Ltag =−
I

∑
i=1

log p(ti|y<i, t<i,x;θ) (3.27)

L = Lword +DLtag (3.28)

3.2.3 Interleaved Model

Finally, I replicate the target-side interleaving model from Nădejde et al. (2017), with

interleaved CCG supertags and target words. I use the baseline Transformer, with

a shared word and supertag embedding space and vocabulary, and postprocessing to
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remove tags after computing loss and before calculating BLEU score. The Transformer

decoder is unchanged, and the probability of the target tag-word sequence y′ is now:

y′ = ytag1 ,yword1 , ...,ytagI ,ywordI (3.29)

py′ =
2I

∏
i=1

p(y′i|y′<i,x;θ) (3.30)

In later experiments, I also interleave DG supertags (detailed in Section 2.2.2) with

source words as a simple method for incorporating source-side syntactic information.

Source-side interleaving leaves the encoder unchanged but doubles the source length.
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Experimental Setup

I now describe the experimental conditions and analysis strategy for investigating the

principal research question.

4.1 Data and Pre-processing

I train all models on publicly available WMT parallel (and monolingual) training data

(Bojar et al., 2017). For Turkish→English, I use newsdev2016 and newstest2017 for

validation and test sets, and for monolingual data, a lack of available backtranslated

data led to using copied English data (English on both source and target sides), ran-

domly sampled from newscrawl2016. As per Currey et al. (2017), I use a ratio of 1:2

parallel:copied data, appending the 413,250 copied sentences to the source and target

training sets for later experiments. I tokenise and process the data with the standard

Moses scripts (Koehn et al., 2007), then shuffled before training.

Turkish is a morphologically rich language with context-dependent word order sub-

ject to local scrambling, most commonly having SOV order (Hoffman, 1995), and En-

glish is morphologically sparse with SVO word order (Greenbaum, 1996). Turkish to

English translation therefore offers considerable syntactic challenges which the current

method attempts to address.

I use the pre-trained EasyCCG model (Lewis and Steedman, 2014) to annotate the

target-side English training data with lexical CCG supertags, detailed in Section 2.2.1.

I removed sentences from the training set which EasyCCG failed to parse, either due

to being longer than 70 words or being partially formed sentences. This filtering was

minimal, reducing the datasets by less than 1%. Table 4.1 shows sentence counts for

the finalised datasets. The final training setup for tag attention used parallel Turkish,

20



Chapter 4. Experimental Setup 21

English and CCG supertag datasets (as in Example 1.1), with one tag per English word

and duplicated tags for BPE subwords.

Train Dev Test

TR-EN 206,625 3,000 3,007

EN-mono 413,250 - -

Table 4.1: Sentence counts for the various different subsets of the parallel

Turkish→English and monolingual English data.

After filtering, I used the Stanza toolkit (Qi et al., 2020) to generate DG parses

for source and target-side data. In both cases, I use two DG supertag templates as in

Table 2.1, interleaving supertags for source-side experiments. I also generate target-

side random tags with the same vocabulary size as CCG supertags, for a baseline which

removes any syntactic advantage.

4.2 Implementation and Training

The NMT systems used are Transformer networks (Vaswani et al., 2017) from the

JoeyNMT toolkit (Kreutzer et al., 2019). The models’ hyper-parameters resemble

those of Hieber et al. (2018) for their optimal WMT17 English→German Transformer

model; I report the full parameter configuration in Appendix A. Modifications to the

Transformer decoder, as described in Section 3.2.1, were implemented directly in

JoeyNMT’s Transformer decoder. Due to time constraints, I use the first single models

trained and do not use ensembles.

Models are evaluated with BLEU score (Papineni et al., 2002), an automatic metric

calculating document-level n-gram precision for NMT hypotheses against reference

translations, where higher scores are a proxy for improved translation fluency and ade-

quacy; it is computed using multi-bleu.perl (Koehn et al., 2007) over the tokenised

validation set during training, and on the test set for the final evaluation. BLEU score

also forms the early stopping metric and controls learning rate decreases. The MTL

model validation only uses translations rather than tag outputs. I used greedy 1-best

search for validation, and beam search (n = 5, with length penalty α = 1) at test time.

I segment words into BPE sub-word units (Sennrich et al., 2016b) learned over both

the source and target languages, with 85,000 merge operations (as per Nădejde et al.).

The CCG supertag vocabulary size was 511 (including <s> and </s>, a padding token



Chapter 4. Experimental Setup 22

and an UNK token), over which the tag attention distribution is predicted.

I use 512-dimensional tied source-target word embeddings and output representa-

tions (1
4 of the FFNN layer dimension). Supertag embeddings are 128-dimensional,

with embedding matrix T of size 511×128. Lower dimensional supertag embeddings

are suitable due to their smaller vocabulary, implying less complex relationships that

need to be modelled. I use a maximum input/output length of 70 tokens, and 140

tokens for interleaving setups.

To analyse the CCG supertag attention model’s performance, I evaluate the model

via BLEU score of WMT test set predictions, in a low-resource Turkish→English set-

ting, against various baselines: a baseline NMT system, a multi-task learning model,

target-side DG supertag and random tag attention models, an interleaving model, mod-

els with monolingual data, and source syntax NMT models. These baselines will help

determine the precise source of improvements in translation quality.
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Results and Analysis

In this section, I evaluate the proposed target-side tag attention model against a base-

line Transformer NMT model. Regarding the principal research question, I show that

the proposed tag attention method improves Turkish→English translation quality. I

eliminate other explanations for these improvements, and show improvements are in-

dependent of source syntax and complementary to monolingual data.

5.1 Target-side Syntax Experiments

To reiterate, this study’s central thesis is that target-side supertag attention improves

Transformer-based NMT. To test this, I experimented on Turkish→English WMT data

with the tag attention NMT model (TA-NMT) against a baseline model. Table 5.1

presents the main results.

The test set results show a small improvement of around 0.1 BLEU for the tag atten-

tion model’s output over the baseline model’s output; this is consistent with the central

hypothesis, and suggests prediction of CCG supertags helps the model produce more

fluent translations. Later experiments show how this improvement can be increased.

TR→EN

Model Dev Test

Baseline 15.55 8.73

Tag Attention 15.77 8.80

+ Loss Decay 15.90 9.11

Table 5.1: Target-side syntax experiments for Turkish→English translation, reporting

BLEU scores for baseline NMT, TA-NMT, and TA-NMT with loss decay. Dev is news-

dev2016, Test is newstest2017; highest score in bold.

23
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Loss decay — During training I noticed the tag attention model’s validation BLEU

scores are initially higher than the baseline, but improvements tail off. I therefore

implemented a decaying tag attention loss to maintain the initial benefits without re-

stricting later performance. This resulted in a further 0.3 BLEU score improvement,

shown in Table 5.1. Decaying tag loss likely improves performance because learn-

ing CCG supertags is more constrained (507 tags vs 85,000 sub-words), so the model

rapidly learns to generalise well over supertags then once proficient it can focus on the

harder word prediction task.

8,000 16,000 24,000 32,000
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Tag Attention
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Figure 5.1: Validation BLEU score curves for a baseline NMT system, TA-NMT and

Decayed TA-NMT systems.

Figure 5.1 demonstrates the decaying supertag loss’ advantage. While the TA-

NMT model outperforms the baseline for most of training, the baseline nearly catches

up by continuing to improve past 28,000 steps, likely because the tag loss becomes

restrictive and detracts from word prediction. The decaying loss TA-NMT model com-

bines both models’ advantages: it initially learns faster using the supertag loss, then

later uses the word loss to maintain this advantage and continue learning consistently

like the baseline, unrestricted by the tag loss. To my knowledge, this is a novel finding.

Random Tags — This ablation experiment tests whether the improvements stem

from CCG supertags’ utility or from a deeper decoder with more parameters, as Kon-

dratyuk et al. (2019) suggest about target-side syntax. I test a decaying TA-NMT model
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with randomly generated tags against a baseline system. The results in Table 5.2 show

random tags marginally improve over the baseline, but do not improve on the CCG

TA-NMT model. This suggests the overwhelming majority of the observed improve-

ments from tag attention do not result simply from a deeper decoder or regularising

effects of predicting tags, running contra Kondratyuk et al.’s findings, and supporting

the tertiary hypothesis. The improvements must therefore be attributed to the dense

syntactic information conveyed by CCG supertags.

TR→EN

Model Dev Test

Baseline 15.55 8.73

Tag Attention + Decay 15.90 9.11
+ Random Tags 15.13 8.79

Table 5.2: Turkish→English experiments with random tags, reporting BLEU scores for

baseline NMT, TA-NMT with CCG supertags and with random tags.

DG Supertags — I also test whether improvements stem from the syntactic utility

of CCG supertags specifically, using Dependency Grammar supertags (described in

Section 2.2.2) as the target-side syntactic information. The results, shown in Table 5.3,

show a decrease of approximately 0.2 BLEU for target-side DG supertags against the

baseline. This suggests the improvements in Table 5.1 stem specifically from CCG su-

pertags’ dense syntactic information, cementing them as the syntactic labels of choice

in the tag attention architecture, and supporting the tertiary hypothesis.

TR→EN

Model Dev Test

Baseline 15.55 8.73

Tag Attention + Decay 15.90 9.11
+ DG-A supertags 15.21 8.51

+ DG-B supertags 15.17 8.59

Table 5.3: Target-side syntax experiments for Turkish→English translation, reporting

BLEU scores for baseline NMT, and TA-NMT with CCG, DG-A and DG-B supertags.

It is likely DG supertags are not sufficiently informative about linear word order to

improve target-side prediction; additionally, DG-A tags’ increased vocabulary (1632
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vs 507 CCG supertags) is likely to be a distractor, explaining their marginally worse

performance. As an example, DG-A main verb supertags are, uninformatively, al-

ways root, while verbal CCG supertags are dense, indicating the sentence type plus the

type and order of dependencies. CCG supertags’ derivational role demonstrates their

inherent utility; conversely, DG supertags are constructed arbitrarily, only signalling

hierarchical relationships rather than sentence-level constraints.

Multi-task learning — I now test whether improvements are replicated by the

MTL model from Section 3.2.2, which has a composite loss but discards tag predic-

tions at test time. The results, shown in Table 5.4, show that the multi-task model

without decay performs considerably worse than the baseline, while the model with de-

cay reaches parity. This suggests first that TA-NMT improvements result from tightly

incorporating syntax via a supertag-context vector, rather than just predicting CCG su-

pertags, supporting the tertiary hypothesis. This may be because task determination

detracts from performance, as Macháček (2018) suggests about MTL NMT. Second,

the decayed MTL’s 0.7 BLEU improvement further illustrates the restrictiveness of tag

loss and the importance of decay.

TR→EN

Model Dev Test

Baseline 15.55 8.73

Tag Attention + Decay 15.90 9.11
Multi-task 14.93 8.03

+ Decay 15.50 8.73

Table 5.4: Turkish→English target-side syntax experiments, reporting BLEU scores for

multi-task learning NMT model against a baseline and TA-NMT systems.

Interleaving tags — I replicate Nădejde et al.’s target-side interleaving model, us-

ing modified data with a baseline system. The results in Table 5.5 show improvements

from interleaving are substantial (around 0.4 BLEU), but only marginally different to

the decaying TA-NMT model’s performance. The similarity is likely because both

models employ a tight coupling of words and syntax; further tests on larger datasets

and other language pairs may help differentiate their performance, and I might expect

that the decaying TA-NMT model’s tuneable, differential tag and word loss may prove

advantageous in other settings. This experiment confirms tight, sequential incorpora-

tion of syntax as an effective general strategy to improve NMT.
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TR→EN

Model Dev Test

Baseline 15.55 8.73

Tag Attention + Decay 15.90 9.11

Interleaved tags 14.71 9.16

Table 5.5: Target-side syntax experiments for Turkish→English translation, reporting

BLEU scores for an interleaved CCG tag NMT system against a baseline and TA-NMT.

Monolingual data — Next, I test whether the observed improvements persist

through and complement adding monolingual data, a common extension to improve

low-resource NMT. I use copied (English→English) data, which is only marginally

less effective than backtranslated data due to increased encoder noise (Currey, 2019).

A shared source-target BPE vocabulary permits English and Turkish source input with-

out issue. I test the decayed TA-NMT model with 413,250 additional monolingual

sentences against the baseline with monolingual data, presenting results in Table 5.6.

TR→EN

Model Dev Test

Baseline 15.55 8.73

+ Monolingual 16.20 9.99

Tag Attention + Decay 15.90 9.11

+ Monolingual 17.01 10.68

Table 5.6: Experiments with target-side syntax for Turkish→English with monolingual

copied data, reporting BLEU scores for baseline and TA-NMT models.

The results indicate around 0.7 BLEU improvement between the two monolingual

data models. First, this suggests the TA-NMT method improves translation quality in-

dependently of whether monolingual data is added, showing promising signs regarding

scalability issues affecting previous syntactic approaches (Kuncoro et al., 2019). Fur-

ther, the BLEU score improvements are nearly 2× greater than improvements for de-

cayed tag attention alone, suggesting TA-NMT is complementary to additional mono-

lingual data; both findings support the secondary hypothesis. The increased improve-

ments suggest that, in addition to letting the model learn a better target-side language

model (outweighing the source-side noise), monolingual data lets the model learn more

syntax through CCG supertags, further improving the output quality.
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Source syntax — In addition, I test whether the same improvements can be achieved

by the addition of source syntax. The method was necessarily limited by the available

source-side (Turkish) syntactic resources, therefore I used two versions of Dependency

Grammar supertags (see Section 2.2.2), interleaved with the source data, for the base-

line and decaying tag attention models. Table 5.7 presents the results.

TR→EN

Model Dev Test

Baseline 15.55 8.73

+ Source Syntax A 15.07 8.54

+ Source Syntax B 14.94 8.53

Tag Attention + Decay 15.90 9.11
+ Source Syntax A 15.45 9.01

+ Source Syntax B 15.54 8.89

Table 5.7: Source and target-side syntax experiments for Turkish→English transla-

tion, reporting BLEU scores for baseline and TA-NMT models, with DG-A and DG-B

supertags.

These results illustrate that no matter how we model the source (with DG-A or DG-

B supertags, or no syntax), using target-side syntax consistently improves performance

by approximately 0.4 BLEU, supporting part of the secondary hypothesis. Additionally,

source-side dependency syntax has no beneficial effect in this setting. While intended

to improve translation adequacy through better source understanding, it appears DG

supertags are not as informative as CCG supertags (supported by results in Table 5.3),

distracting the model and resulting in less useful source representations. The increased

interleaved sentence lengths may also degrade translation quality. It therefore remains

to be seen what kind of source syntax would help alongside TA-NMT; in future work I

intend to test less ad hoc, more sophisticated methods such as linearised source parses

(Currey and Heafield, 2018) and source-side CCG supertags.

Overview — In response to the principal research question, the chief conclusion

from these Turkish→English experiments is that the proposed method of predicting

attention over CCG supertags with decaying loss improves output translation quality.

These improvements from the TA-NMT model are independent of those from decoder

depth, DG supertags, multi-tasking, monolingual data or source syntax, and are com-

plementary to adding monolingual data, with source-side syntax results proving incon-
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clusive on this point. The results thus strongly support this work’s three hypotheses.

Further extensions are possible that would provide more conclusions but were lim-

ited by time. One main extension to consider is whether hard supertag decisions, in-

stead of the soft decisions in TA-NMT, produce better predictions. This could be done

in a supervised setting by explicitly predicting CCG supertags, or in an unsupervised

setting using Gumbel-softmax (Jang et al., 2017).

5.2 Error Analysis

I now conduct an analysis of translation performance on different syntactic construc-

tions, in terms of relative document-level BLEU scores, for the decaying TA-NMT

model against the baseline, both with monolingual data. Sentences with different syn-

tactic constructions are divided by CCG supertags as per Nădejde (2018): questions

contain S[q], S[wq] or S[qem]; conj signals conjunctions; prepositional phrases (PPs)

are indicated by PP, ((S\NP)/(S\NP))/NP, or (NP\NP)/NP categories; tags with S[to]

dependencies indicate control/raising clauses; and relative/subordinate clauses are in-

dicated by complex categories including (NP\NP)/(S/NP).

PP Conj. Rel./Sub. Control Questions Total

TR→EN 2175 1221 843 479 112 3007

Table 5.8: Frequencies of sentences with different syntactic constructions in English

newstest2017 set.

Table 5.8 shows construction frequencies in the test set; sentences can contain mul-

tiple construction types, but if multiple instances of one construction occur in one sen-

tence, it is only counted once. Successfully translating these phenomena from Turkish

to English requires proficient handling of both long-distance agreement and word or-

der.

The results over the subsets in Figure 5.2 demonstrate a largely consistent improve-

ment over the different sentence types, control sentences notwithstanding. The largest

improvements are seen for questions (1.44 BLEU) and conjunctions (1.00 BLEU), which

makes sense since CCG makes these constructions explicit via S[q/wq/qem] and conj

categories. I note the question subset’s small size warrants further tests with a larger

question set. Overall, BLEU improvements for questions, conjunctions, prepositional

and relative/subordinate clauses therefore indicate predicting informative CCG su-
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Figure 5.2: Improvements in BLEU score for syntactic construction test sets for the

TA-NMT model with decay and monolingual data against a baseline system with mono-

lingual data. Values left of bars indicate the percentage of the full test set that each

subset constitutes.

pertags facilitates better handling of agreement and word order (especially re-orderings)

from Turkish to English.

Figure 5.2 shows a marginal improvement on the control/raising subset (around

0.1 BLEU). Control constructions usually involve long-distance agreement (Nădejde,

2018); the results therefore suggest CCG supertags may not carry enough information

to usefully model the agreement and dependencies in these complex constructions.

CCG supertags do generally help with long-distance agreement however, demonstrated

by improvements for conjunctions.

I note the current subset divisions are coarse-grained and have relatively few sen-

tences; an in-depth comparison using larger subsets and finer-grained divisions, e.g.

via constituency parses, may prove enlightening. In sum, this analysis demonstrates

how CCG supertags improve the general handling of word order and agreement in

translation, reinforcing the central thesis. I now discuss examples illustrating these

improvements.

5.3 Discussion

The experiments illustrate the proposed method of predicting attention over CCG su-

pertags improves Turkish→English translation quality. Here I discuss the explicit im-

pact of CCG supertags on the handling of word order and agreement, through two test

set examples in Table 5.9 for which the tag attention model predicts more grammatical

translations.

Example I shows a more adequate and fluent translation for a subject wh-question
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I TR→EN — Question & PP

Source Bunların sorumlusu kimdir ?

Target Who is responsible for them ?

Trg-CCG S[wq]/(S[dcl]\NP) (S[dcl]\NP)/(S[adj]\NP) (S[adj]\NP)/PP PP/NP NP .

NMT Is they responsible ?

TA-NMT Who is responsible for them ?

II TR→EN — Coordination & Subordinate

Source Kontrol istasyonumuz TRT yayınlarının geri geldiğini ve bildiri okunmaya başladığını söyledi .

Target Our control station said that TRT broadcasts came back on-air and the announcement started

to be read .

Trg-CCG NP/N N/N N (S[dcl]\NP)/S[em] S[em]/S[dcl] N/N N (S[dcl]\NP)/(S[adj]\NP)

(S\NP)\(S\NP) S[adj]\NP conj NP/N N (S[dcl]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP)

(S[b]\NP)/(S[pss]\NP) S[pss]\NP .

NMT our unions have come back and say the statement is beginning being read .

TA-NMT our Control stations say that TRT publications have come back and the statement started
to be read .

Table 5.9: Examples comparing baseline (NMT) and tag attention NMT (TA-NMT) sys-

tem output for Turkish→English for a question (I) and coordination (II). Hypothesised

targets are shown with source, target and CCG tag references. TA-NMT improvements

against NMT predictions are in bold.

with a prepositional phrase. The TA-NMT system correctly predicts the wh-question,

whereas the baseline predicts a yes-no question. Correctly predicting the S[wq] cat-

egory would help the TA-NMT system predict an initial wh-word. Next, the TA-

NMT system translates the sentence structure correctly by predicting the copula su-

pertag (S[dcl]\NP)/(S[adj]\NP), indicating a declarative verb, a following adjective and

agreement with the NP subject. The syntax-unaware baseline fails to reconcile the

third-person plural pronoun and singular copula, predicting incorrect agreement and

argument structure. Third, the baseline fails to translate the final PP for them; if the

TA-NMT system predicts (S[adj]\NP)/PP for responsible, it will know to predict a

PP, whose tag indicates a constituent NP. This also demonstrates proficient reorder-

ing of the Turkish sentence-initial PP to sentence-final. The TA-NMT system’s CCG

supertag prediction thus improves agreement, word order and argument handling in

Example I.

For Example II, the TA-NMT correctly predicts the coordination structure inside a

subordinate/embedded S[em] clause, likely because it predicts the S[em] dependency

on said’s supertag, while the baseline predicts an embedded clause inside coordina-
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tion. The TA-NMT system also correctly translates the full subject and object phrases

by predicting multiple N dependencies. Finally, the TA-NMT system correctly trans-

lates the past tense to-infinitival final clause rather than two S[ng] verbs as the base-

line predicts, likely by predicting the (S[dcl]\NP)/(S[to]\NP) category and dependency

correctly prior to predicting to. This demonstrates how the proposed method vastly

improves overall sentence structure for various syntactic constructions by predicting

future word order and agreement dependencies.

This work has important implications. This discussion emphatically reinforces the

error analysis, showing increased BLEU scores stem from improved prediction of fu-

ture word order and agreement dependencies for subordinate, interrogative, coordina-

tion and prepositional constructions; the increased fluency and adequacy is accredited

to CCG supertag prediction. Regarding the principal research question, the full results

strongly support the central hypothesis. The secondary and tertiary hypotheses are

generally supported, since target-side supertag attention is shown to be complemen-

tary to monolingual data, with improvements attributable solely to supertag attention.

The main implication is that Transformer-based NMT should attempt to incorporate

target-side syntax using this method, which proves beneficial for low-resource, syn-

tactically divergent languages. This reinforces previous results for RNN-based NMT

(Nădejde et al., 2017). Additionally, I underline for other work CCG supertags’ utility

as lexicalised chunks of syntactic information, thanks to their derivational role.

This study’s main strength is the range of experiments focusing attribution of im-

provements to the specific CCG supertag attention method. An inherent drawback of

this method is the lack of explicit interpretability of supertag predictions; a deeper

inspection is left to future work. Finally, time constraints limited experiments with

high-resource language pairs, which are also left to future work, with further recom-

mendations offered in Section 6.2.



Chapter 6

Conclusion

6.1 Major Findings

In this work I proposed a method to directly incorporate target-side syntax in Trans-

former-based NMT by predicting attention over CCG supertags. The results in Chapter

5 affirm the central thesis and show that the method improves translation quality over

baselines in a low-resource setting. Improvements are independent of source syntax

and additional monolingual data, and complementary to the latter, largely supporting

the secondary hypothesis. The model is only matched by an interleaving model and

outperforms MTL NMT, and TA-NMT models with DG or random tags, supporting

the tertiary hypothesis. The TA-NMT model with decaying loss and monolingual data

produces the greatest improvement of 0.7 BLEU. Finally, the model shows significant

improvements for sentences with questions, coordination, subordinate clauses and PPs,

via improved reordering and agreement handling.

In sum, it is the specific combination of the dense categorial information in CCG

supertags and the proposed tag attention method that provides the decayed CCG TA-

NMT model with a tangible advantage over syntax-unaware NMT systems.

6.2 Future Work

This study begets plentiful avenues for future work. First, experiments with other

language pairs, including high-resource source-side languages, are necessary to test

consistency and scaling; of special interest is translation into morphologically under-

specified languages, e.g. Mandarin Chinese, for which supertags are more informa-

tive than English given increased ambiguity, perhaps leading to greater improvements.

33
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This would also permit testing source-side CCG supertags in Transformer-based NMT.

Second, a deeper manual analysis of syntactic performance, especially given the large

improvements for questions, could further elucidate this method’s advantages. A third

possible avenue could involve replacing tag loss decay with a reactivatable loss thresh-

old to keep tag predictions in check. Finally, I intend to test this method with Mini-

malist Grammar supertags (Chomsky, 1995; Torr et al., 2019) to implement the first

practical application of Chomsky’s Minimalist Program in NLP.
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dummies: A serious need for trivial baselines in multi-task neural machine trans-

https://arxiv.org/abs/1611.01144
https://aclanthology.org/W15-3014
https://aclanthology.org/2020.acl-main.560
https://aclanthology.org/Q18-1017
https://aclanthology.org/W17-3204
https://aclanthology.org/W17-3204
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045


Bibliography 41

lation. The Prague Bulletin of Mathematical Linguistics, 113:31–40, 2019. URL

https://ufal.mff.cuni.cz/pbml/113/art-kondratyuk-cardenas-bojar.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler. Joey NMT: A minimalist NMT

toolkit for novices. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 109–114,

Hong Kong, China, November 2019. Association for Computational Linguistics.

URL https://aclanthology.org/D19-3019.

Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen Clark, and Phil Blunsom. Scal-

able syntax-aware language models using knowledge distillation. In Proceedings of

the 57th Annual Meeting of the Association for Computational Linguistics, pages

3472–3484, Florence, Italy, July 2019. Association for Computational Linguistics.

URL https://aclanthology.org/P19-1337.

Surafel Melaku Lakew, Mauro Cettolo, and Marcello Federico. A comparison of trans-

former and recurrent neural networks on multilingual neural machine translation. In

Proceedings of the 27th International Conference on Computational Linguistics,

pages 641–652, Santa Fe, NM, August 2018. Association for Computational Lin-

guistics. URL https://aclanthology.org/C18-1054.

An Nguyen Le, Ander Martinez, Akifumi Yoshimoto, and Yuji Matsumoto. Improv-

ing sequence to sequence neural machine translation by utilizing syntactic depen-

dency information. In Proceedings of the Eighth International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pages 21–29, Taipei,

Taiwan, November 2017. Asian Federation of Natural Language Processing. URL

https://aclanthology.org/I17-1003.

Mike Lewis and Mark Steedman. A* CCG parsing with a supertag-factored model.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 990–1000, Doha, Qatar, October 2014. Association for

Computational Linguistics. URL https://aclanthology.org/D14-1107.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs

to learn syntax-sensitive dependencies. Transactions of the Association for Com-

putational Linguistics, 4:521–535, 2016. URL https://aclanthology.org/

Q16-1037.

https://ufal.mff.cuni.cz/pbml/113/art-kondratyuk-cardenas-bojar
https://aclanthology.org/D19-3019
https://aclanthology.org/P19-1337
https://aclanthology.org/C18-1054
https://aclanthology.org/I17-1003
https://aclanthology.org/D14-1107
https://aclanthology.org/Q16-1037
https://aclanthology.org/Q16-1037


Bibliography 42

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.

Multi-task sequence to sequence learning. In Proceedings of the 4th Interna-

tional Conference on Learning Representations, San Juan, Puerto Rico, 2016. URL

https://arxiv.org/abs/1511.06114.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to

attention-based neural machine translation. In Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Processing, pages 1412–1421,

Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL

https://aclanthology.org/D15-1166.
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Miloš Stanojević and Mark Steedman. Max-margin incremental CCG parsing. In

Proceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, pages 4111–4122, Online, July 2020. Association for Computational Lin-

guistics. URL https://aclanthology.org/2020.acl-main.378.

Mark Steedman. A very short introduction to CCG. Unpublished manuscript,

1996. URL https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/

ccgintro.pdf.

Mark Steedman. Taking scope: The natural semantics of quantifiers. MIT Press,

Cambridge, MA, 2012.

https://aclanthology.org/P18-2051
https://aclanthology.org/P18-2051
https://aclanthology.org/E17-2060
https://aclanthology.org/P16-1009
https://aclanthology.org/P16-1162
https://aclanthology.org/D16-1159
https://aclanthology.org/D16-1159
https://aclanthology.org/2020.acl-main.378
https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf
https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf


Bibliography 45

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,

volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.

cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.
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Appendix A

JoeyNMT Training Hyper-parameters

In Table A.1 below I provide the hyper-parameters used to train the baseline and im-

proved Transformer models in JoeyNMT. The codebase for the modified tag attention

model with decay, plus various data pre-processing scripts, will be made publicly avail-

able.

Parameter TR→EN Parameter TR→EN

Tokenisation BPE Validation frequency 1/epoch

BPE merges 85000 Shuffled True

Max. input/output length 70 Initialiser xavier

Optimiser adam Bias initialiser zeros

Adam betas [0.9, 0.999] Initialisation gain 1.0

Scheduling plateau Embedding initialiser xavier

Normalisation token Tied embeddings True

Patience 5 Tied softmax True

Learning rate 0.0002 Encoder/Decoder layers 6

LR decrease factor 0.7 Encoder/Decoder heads 8

Label smoothing 0.1 Embedding dimension 512

Batch size 2048 Scaled embeddings True

Batch type token Embedding dropout 0

Evaluation metric BLEU Hidden size 512

Early stopping metric BLEU FFNN size 2048

Epochs 20 Dropout 0.1

Batch multiplier 1 Tag embedding dimension 128

Table A.1: Full training hyper-parameter set for models reported in this study.
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Appendix B

Supplementary Results

Smaller Vocabulary — This experiment does not directly investigate the principal

research question or alternative hypotheses, thus I include it here in the appendix.

I tested whether improvements are still observed for a small vocabulary with 30,000

BPE merge operations/tokens, as Ataman et al. (2017) use for Turkish to English trans-

lation, compared to 85,000 tokens as per Nădejde et al.’s (2017) interleaving model,

meaning there will be more subwords in each sentence. The results in Table B.1 show

that improvements from tag attention (about 0.3 BLEU) largely remain alongside the

consistent overall 1.4 BLEU improvement for all smaller vocabulary models. The over-

all improvement for a smaller vocabulary is likely because making predictions over a

small vocabulary is a much more constrained task, then the model can learn to associate

CCG supertags with multiple sub-words. Therefore these results conform with expec-

tations and are included for completeness. In future work, it may be appropriate to use

a smaller BPE vocabulary alongside tag attention, given the overall improvement.

TR→EN

Model Vocab Dev Test

Baseline

85,000

15.55 8.73

Tag Attention 15.77 8.80

+ Decay 15.90 9.11

Baseline

30,000

16.99 10.07

Tag Attention 17.39 10.21

+ Decay 17.23 10.36

Table B.1: Target-side syntax experiments for Turkish→English translation with a

smaller BPE vocabulary, reporting BLEU scores for baseline, TA-NMT and decayed TA-

NMT models with 85,000 and 30,000 token BPE vocabularies.
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